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Abstract In this paper we present first results on the transition of the separated
boundary layer along a compression ramp at Mach 5 as an example
for today's capabilities of direct numerical simulation of transition in
complex shear flows. The computational method is based on the 5th
order hybrid compact-ENO method of Adams and Shariff, 1996. The
flow parameters of the considered configuration are adjusted to an ex-
perimentally feasible configuration. The shock-induced laminar separa-
tion extends for about 20 incoming-boundary-layer thicknesses. We find
that for the two-dimensional solution following a two-dimensional sec-
ond mode instability imposed at inflow the unsteady fluctuations with
respect to the mean remain small upto rather large excitation levels of
the inflow disturbance. No indications for a global instability of the
two-dimensional steady solution have been found so far. Even at large
inflow-disturbance excitation levels the two-dimensional flow exhibits a
split into a nearly steady solenoidal part and an unsteady acoustic part.
If in addition to the second mode an unstable first oblique mode is im-
posed at inflow, streamwise vortices are generated in the detached shear
layer.

1. Introduction

An example for the importance of transition in aerodynamic configu-
rations is the effectiveness of control surfaces of re-entry vehicles whose
flight corridor passes through a regime of comparably low Reynolds num-
ber (Muylaert and Berry, 1998; Berry et al., 1999). Also, down-sized ex-
perimental vehicles or rescue vehicles can exhibit laminar or transitional
flows along most of their body surface during re-entry since at supersonic
and hypersonic speed transition is delayed. For incompressible bound-
ary layers transition mechanisms are fairly well understood (Kleiser and
Zang, 1991; Kachanov, 1994). Transition in compressible boundary-
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layers was subject of intense investigations in the recent past (Thumm
et al., 1990; Pruett and Zang, 1992; Pruett et al., 1995; Pruett and
Chang, 1995; Pruett and Chang, 1998; Eif~ler and Bestek, 1996; Adams
and Kleiser, 1996; Mielke, 1999; Mielke and Kleiser, 1999, e.g.). To
our knowledge only very few initial studies have been performed so
far on transition in supersonic boundary layers with shock-boundary-
layer interaction (Pagella et al., 2000; Lawal and Sandham, 2001).
Linearized theories for compressible turbulence (Kovasznay, 1953) and
shock-turbulence interaction (Ribner, 1953; Ribner, 1954) were early
theoretical developments. From these it is known that the interaction
with a shock-wave couples the otherwise independent linear modes (vor-
ticity mode, acoustic mode, entropy mode).

The laminar base flow along a supersonic compression ramp with suf-
ficiently large deflection exhibits an area of separated flow which is con-
siderably larger than that for turbulent flow (Adamson and Messiter,
1980). Simplified linear stability analysis such as for zero-pressure gra-
dient boundary layers cannot be performed for the compression ramp
flow. The dominant transition mechanisms for this configuration are
unknown. For separated flows a global eigenmode analysis was proposed
by Theofilis et al., 2000.

With the numerical study, for which we present first results in this
paper, we assume that transition takes place in a low-noise environment.
We expect that receptivity near the leading edge initiates a "natural"
transition through the most unstable linear eigenmodes of the laminar
attached boundary layer. The flow parameters of our setup are adjusted
to that of a planned experiment (see section 2) which is a generic model
for the flow encountered near the body flap of a re-entry vehicle. For
a flat-plate boundary-layer at high free-stream Mach numbers two in-
stability modes of different character coexist, the first-mode instability
which is of vorticity character, and the second-mode (or Mack-mode)
instability which is of mixed vorticity-acoustic type (Mack, 1984; Mack,
1990). Whereas the former is oblique, i.e. it travels downstream at
an angle with respect to the freestream, the dominant second mode
instability is two-dimensional. The relevance of the second mode for
laminar-turbulent breakdown is unclear at present (Stetson and Kim-
mel, 1992; Pruett and Chang, 1998, e.g.). It is known that these two
types of instabilities behave differently with respect to boundary-layer
non-parallelity (El-Hady, 1991) and wall-heating (Mack, 1984).

A two-dimensional second mode instability cannot initiate transition
without a secondary instability mechanism which most likely follows
a subharmonic or H-type route (Pruett and Zang, 1992; Adams and
Kleiser, 1996). For the first mode a secondary instability mechanism is
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Parameter Value Comment
M. 5
Re6o 5967 at inflow
Re6, 4319 at inflow

6; 6.84- 10-4 [mn], at inflow
T• 83.33 [K]
Tw 4.8 Tc,
S. 110.4K
U* 915 [m/s]
p00  945 [Pa]

Table 1. Flow parameters.

not required (Thumm et al., 1990; Adams and Kleiser, 1993). Since
prior to reattachment the mean streamlines are curved, also a G6rtler
instability can exist.

2. Problem formulation

We adapt the flow parameters to an experimental setup proposed in a
preliminary version of the Stage I Report of the RTO Working Group 10
on "Technologies for Propelled Hypersonic Flight", Subgroup 3 "CFD
Validation for Hypersonic Flight", Version January 7, 2000, data set
number 2, heated hollow cylinder flare, by B. Chanetz and J, P, Davis.
In the final version of this report (Knight, 2000) this proposed experi-
mental data set unfortunately has been discarded. It appears, however,
to be a suitable candidate for DNS. The flow parameters are given in ta-
ble 1, quantities with a star superscript are dimensional, other quantities
are non-dimensionalized by the displacement thickness at inflow 61 and
free-stream quantities. The situation of the computational domain with
respect to the experiment is indicated in figure 1(a), the corresponding
geometrical parameters are given in table 2. The computational do-
main is indicated by a solid frame, the experimental-model contours are
indicated by a dashed line. Whereas the experimental model is a hollow-
cylinder flare combination we neglect the spanwise curvature and use a
plane compression ramp as computational representation. To avoid the
leading-edge singularity the computational domain starts at a distance
x* downstream of the leading edge. We set the wall temperature equal
to the adiabatic-wall temperature of the incoming laminar boundary
layer. The incoming boundary layer profiles are taken from a similarity
solution, figure 2.

To achieve consistency with the free-stream conditions, the wall-normal
component w(z) of the similarity solution is ramped exponentially to
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CAo

0

0H

(a) Sketch of the setup, (b) Computational mesh, not every
- computational domain, grid is line shown.
- - - - model contour.

Figure 1. Compression ramp configuration.

Parameter Value Comment
x4 2.53. 10' [m], distance from i.e.
Li 260
L2 147
0• 150

HO 60
H1  60
L, 357
Ly 12.6

Table 2. Geometric parameters.
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Parameter First mode Second mode
a,, 0.4828 2.2061
a -0.0064 -0.0123

1 0
w 0.4 2

Table 3. Eigenvalues of first and second mode instability.

zero outside of the boundary layer. For the similarity solution we per-

form a spatial linear stability analysis assuming parallel flow. We pick a

second mode near its maximum spatial growth rate with the eigenvalues

given in table 3. The amplitude distribution of the second

mode is shown in figure 3(a). The phase velocity of the second mode

is CPhase = 0.91 so that the mode travels with almost the free-stream

velocity. It is of vorticity character above the relative sonic layer and of
acoustic character below (Mack, 1990). An unstable first mode is given

t 2 4 3 0 1 2 2 4

(a) Second mode: 10 u'(z), (b) First mode: - u'(z), 10.
S w'(z), (Z), 0w'(z), -- " p'(z), -- 100 .p'(z).

. 100. p'(z).

FiguTe 3. Amplitude distributions.

by the parameters in table 3, where the frequency was chosen to be an
integer fraction of the second mode frequency. The amplitude distribu-

tion of the first mode is shown in figure 3(b). The first mode travels
downstream with a phase velocity of CPhase = 0.83. Near the critical
layer z, where u(Zcr) = cPhase, the density fluctuations have maximum
amplitude.
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The fundamental equations solved are the conservation equations for
mass, momentum and energy in generalized coordinates

OU aFE aGE alHE a Fs a Gs a Hs

J +09J J J J -6 J oy J +CJ

where the conservative variables are U = {p, pu, pv, pw, E}, with
E = P/(- 1) + p(u2 + v2 + w2 )/2. Considering only essentially two-
dimensional configurations we limit the coordinate generalization to the
(x, z)-plane. The physical space (x, y, z) is mapped onto the computa-
tional space (6,77, C) which is Cartesian and equi-spaced. The convective
and diffusive fluxes are detailed in Adams, 1998.

At the inflow all depen-
dent variables are imposed.
At the no-slip wall all ve-
locities are set to zero and
the wall temperature is pre-
scribed. At the outer trun-
cation plane Dirichlet bound-
ary conditions fixing all vari-
ables at their free-stream val-
ues are imposed. At the out-
flow plane inviscid non-reflecting ......-. - -------
boundary conditions of Thomp- 1 2 3

son, 1987, are applied. Z

The mapping of the rect- Figure 2. Similarity solution for the incoming

angular, evenly spaced com- boundary layer: - u(z), ---- T(z), -.- 10
putational mesh onto the phys-w(z).
ical mesh as shown in figure
1(b) is outlined in Adams, 1998. The mapping parameters are adjusted
so that about half of the wall-normal grid points are located at z < 6.
Grid points are condensed in streamwise direction towards the corner.
The corner itself is smoothed so that it can be resolved on the mesh,
curvature radius at the corner is 0.5, whereas the curvature radius of
the upper truncation plane is 50.

A family of symmetric compact finite difference schemes with spectral-
like resolution has been introduced by Lele, 1992. They are being widely
used for direct numerical simulation of transitional and turbulent shear
flows (Adams and Kleiser, 1996; Pruett et al., 1995, e.g.) and aeroa-
coustic problems. As with spectral schemes symmetric compact schemes
are sensitive to boundary condition formulation and aliasing errors. The
latter is of particular concern for the discretization of convective terms
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in the Euler or Navier-Stokes equations, where triple products appear in
the conservative form of the momentum equations.

In this study we use compact upwind schemes for the discretization
of convection terms, a class of which has been derived from a general-
ized formulation of compact schemes by Adams and Shariff, 1996, and

Adams, 1998. The schemes have a centered stencil but become upwind

biased due to non-symmetric coefficients. The upwind biasing introduces

a certain amount of numerical dissipation at non-resolved wave numbers

which allows to contain aliasing errors. At discontinuities, the scheme

is coupled to a high-order essentially non-oscillatory scheme (Shu and

Osher, 1989) as described in Adams and Shariff, 1996, and in Adams,
1998.

DNS codes are required to resolve all scales appearing in a flow prob-

lem. For that reason it is necessary to perform two different kind of tests,

the first of which is to assess how well fluctuations about a mean flow

are represented, the second is to see how well the mean flow itself can be
computed. Concerning the first, results from linear stability theory can
be used as a reference. For the second, comparison with steady-state
computations and experimental results for laminar compression ramp
flow should be sufficient, in this case the ENO-scheme is active around
the shock. These tests have been successfully applied to the the present
numerical method. The results are documented in Adams, 1998.

3. Simulation results

The analysis of transition in shear flows requires to accurately estab-
lish the steady base flow first. Although for compression-corner flows
with separation it is not clear a priori that a steady two-dimensional so-
lution exists, such a solution was found for our flow configuration. Since

all computations were performed with explicit time integration with-
out convergence acceleration, the steady-state computations were rather

time consuming. After the steady-state solution was established, two-
dimensional inflow disturbances were created by superimposing a second
Mack mode at a sufficiently large amplitude, resulting in an unsteady

two-dimensional flow. The separate analysis of this two-dimensional so-
lution which cannot exhibit laminar-turbulent break down, is helpful
to distinguish the effects of the two-dimensional Mack mode from the
three-dimensional setting where both first and second mode instabilities

are active. Eventually, the two-dimensional steady solution is perturbed

by superimposing a combination of first and second mode instability.
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Set N. N0
2D 400 100

2DF 1000 140
2DFF 1500 180
2DFFF 2000 240

Table 4. Mesh resolution for different data sets of the steady flow solution.

3.1 Steady flow
As initial data we use a laminar flat plate boundary layer similarity

solution along the ramp surface, developing as if there was no streamwise
pressure gradient. In the exterior of the boundary layer an inviscid Euler
solution for the compression-ramp flow is imposed. The initial evolution
is computed by a 3rd order ENO scheme with a Roe flux formulation with
entropy fix (Shu and Osher, 1989), which is more dissipative than the
CUVB scheme used eventually for the later stages (Adams and Shariff,
1996; Adams, 1998). In figure 4 we show the evolution of the skin
friction coefficient and the wall pressure from the initial distribution.
For each of the resolutions given in table 4 the corresponding steady
state solution is shown. It is obvious that the length of the laminar
separation depends strongly on the numerical diffusion introduced by the
discretization and on the mesh resolution. With the last refinement levels
2DFF and 2DFFF an almost mesh independent solution is achieved.

, .1 . 1 . 0.2

00302 II
A '

\ ~IIoi
000

0 03 2oo 33 43W 4 5 0

x x

(a) Cf with increasing mesh resolution, (b) pw with increasing mesh reso-
-- set 2D, ---- set 2DF, ---- set lution, - set 2D, ---- set 2DF,
2DFF, - -set 2DFFF. - -.- set 2DFF, - set 2DFFF.

Figure 4. Evolution of the steady-state skin friction coefficient and the wall pressure.
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(a) w., grey scales (b) lVpl, grey scales (c) Iso-surface of I1w =

from light -0.2 to from dark 0 to light 4.7. 10-4: grey shaded,
dark 0.2. 0.003. IVpj in the computational

planes 71 = 1, ý = 1:
grey coded between 0 and
0.2, contours of jw4 I in the
plane ( = 0: grey coded be-
tween 0 and I . 10-4.

Figure 5. Steady spanwise-vorticity distribution (a), instantaneous pressure-
gradient magnitude (b), and instantaneous visualization at time t = 372 after im-

posing the inflow perturbation (c).

3.2 Two-dimensional unsteady flow

For the unsteady two-dimensional solution we have further increased
the spatial resolution to N. = 5000 and N, = 320 cells, for which the
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solution can be considered as converged. A reasonable estimate for the
amplitude reached by the most unstable linear eigenmodes at inflow is
max(u')/Uo• = 10'. Given the streamwise growth rates, this is the am-
plitude roughly reached by the most unstable eigenmodes growing from
low-level noise near the leading edge. Since the maximum amplitude of
the density eigenfunction is about one order of magnitude larger than
that of the streamwise velocity eigenfunction for both first and second
mode, one can expect that at a larger amplitude linear theory is no longer
a good approximation. We found, however, that imposing the second
mode instability scaled with max(u')/U. , 10-4 had no visible effect
on the solution. The imposed second mode instability in fact turned
out to be stable in the attached part of the spatially growing boundary
layer. This behavior is consistent with the finding of El-Hady, 1991,
that boundary-layer non-parallelity stabilizes a two-dimensional second
mode, compared with the result for parallel flow. The second mode in-
stability neither was able to trigger an instability in the detached shear
layer. Only at a significantly increased amplitude of max(u')/U,, = 0.05
the flow unsteadiness became significant with considerable excursions of
skin friction and surface pressure from the mean. It is found that the in-
stability creates mainly acoustic waves traveling downstream while being
reflected back and forth between the detached shear layer and the wall.
The solenoidal flow structure remains almost steady. An instantaneous
WY distribution is almost indistinguishable from the steady state solution
in figure 5(a). The acoustic component, however, is highly unsteady, as
a snapshot of pressure-waves indicates shown in figure 5(c).

3.3 Three-dimensional unsteady flow

Since in three-dimensions a similarly fine resolution as in the two-
dimensional unsteady case is unaffordable, we have chosen the stream-
wise resolution as N., = 3000 and the wall-normal resolution as N, =
180. This leaves room for a spanwise-domain size of two first-mode
spanwise wavelengths, discretized with Ny = 90 points. In this case
we can consider the resolution being somewhat finer than case 2DFF of
section 3.1 as sufficient, albeit not fully mesh independent. The three-
dimensional simulations are in progress and we can only show prelimi-
nary instantaneous results in this paper. The final results will be pub-
lished elsewhere. For the present results at time t = 372 after imposing
the inflow perturbation, the inflow disturbance has not yet reached the
outflow plane. The instantaneous skin friction coefficient Cf and the
instantaneous surface pressure show only a weak unsteadiness near the
corner and near boundary-layer reattachment. An snapshot of the flow
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at t = 372 shows the generation of streamwise vortices from the first
mode instability in the detached shear layer, figure 5(c).

4. Concluding remarks
This paper presents first results of an ongoing research project, final

results will be presented elsewhere. The author acknowledges the Swiss
Center for Scientific Computing for providing CPU time on its NEC
SX-5 computer.
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